
Chaos Engineering, Flamegraphs & eBPF Ob-
servability
SRE Team Demonstration - Key Takeaways

What We Demonstrated Today
1. Flamegraph Profiling - Visual Performance Analysis

• Tool: Go pprof + FlameGraph
• What it does: Shows exactly where CPU time is spent
• Key finding: 40% of CPU in database operations, 12% in JSON serial-

ization
• Value: Identifies optimization opportunities without code instrumenta-

tion

2. Chaos Engineering: Network Partition - Failure Injection

• Tool: iptables + eBPF tracing
• What it does: Simulates network failure between services
• Key finding: 5.8 second recovery time, 0 orders lost, retry logic validated
• Value: Test resilience before production incidents

3. Chaos Engineering: CPU Throttling - Resource Pressure

• Tool: Docker resource limits + eBPF scheduler tracing
• What it does: Limits CPU to simulate overload
• Key finding: 10x latency increase, 0% errors, graceful degradation con-

firmed
• Value: Measure system capacity and scaling thresholds

Business Impact

Capability Investment ROI Impact
Chaos Engineering 1 week setup 6 months Reduce MTTR

60%, find issues
pre-production

Flamegraph
Profiling

1 day setup 3 months Reduce cloud
costs 30-40% via
optimization

1

Capability Investment ROI Impact
eBPF Observability 2 days training Immediate Debug

production with
<1% overhead

Total Investment: ~2 weeks team time Cost: $0 (all open-source tools) Ex-
pected Annual Savings: $50K-$200K (via incident reduction + optimization)

Key Technical Insights
Flamegraphs Revealed

CPU Time Distribution:
Database queries: 40% ← Optimization target
JSON serialization: 12% ← Consider binary protocol
Order validation: 15% ← Can parallelize
Network I/O: 8%
Other: 25%

Network Chaos Results

Timeline:
0s: Network partition injected (iptables DROP)
<1s: First connection failure detected
1-25s: TCP retransmissions visible via eBPF
25s: Connection timeout (kernel default)
90s: Partition healed
91.2s: First successful connection
95.8s: Full operational recovery

Data Loss: 0 orders (queued during outage)

CPU Throttle Results

CPU Limited to 10% (from 100%):
Latency: 120ms → 1150ms (10x increase)
Queue depth: 0 → 51 requests
Error rate: 0% (graceful degradation)
Recovery: 20 seconds to process backlog

Capacity Finding: System handles 3x current load before degradation

2

eBPF - What It Showed Us
Without modifying application code, we traced:

� TCP connection attempts and retransmissions � Kernel scheduler delays and
context switches � Connection timeout behavior (25s default) � Process wait time
in CPU runqueue (850ms avg under pressure)

Performance Impact: <1% CPU overhead Production Safe: Yes - kernel-
level, read-only

Make Targets - Try It Yourself
Profiling

make profile-cpu # Generate CPU flamegraph (30s)
make profile-all # All profile types (CPU, heap, mutex, etc.)
make profile-view # Open flamegraphs in browser
make profile-analyze # AI analysis of performance

Chaos Experiments (10 Total)

make chaos-network-partition # eBPF network tracing
make chaos-cpu-throttle # Scheduler performance
make chaos-oom-kill # Memory pressure
make chaos-disk-io # I/O starvation (advanced eBPF)
make chaos-cascade # Multi-service failure
make chaos-flamegraph # Profiling during chaos

Utilities

./generate-load.sh 60 30 # Generate load (60s, 30 req/s)
make help # Show all targets

Tools We Used (All Free/Open Source)

Tool Purpose URL
bpftrace eBPF tracing https://github.com/iovisor/bpftrace
pprof Go profiling https://pkg.go.dev/net/http/pprof
FlameGraph Visualization https://github.com/brendangregg/FlameGraph
Prometheus Metrics https://prometheus.io
Grafana Dashboards https://grafana.com
Docker Containers https://docker.com

3

Industry Adoption
Companies using these techniques: - Netflix: Chaos Monkey (pioneered
chaos engineering) - Google: Continuous profiling in production - Amazon:
eBPF for production observability - Facebook: Profiling at scale (millions of
servers) - Uber: Chaos testing for ride reliability

Conference presentations: - SREcon (annual chaos engineering track) -
KubeCon (eBPF observability sessions) - QCon (performance engineering talks)

Next Steps for Our Team
Immediate (This Week)

□ Run remaining 7 chaos experiments in staging
□ Review flamegraphs for optimization opportunities
□ Document baseline performance metrics

Short Term (This Month)

□ Identify 3 production optimizations from profiling
□ Create runbooks based on chaos findings
□ Team training: bpftrace basics (4 hour workshop)
□ Set up Grafana alerts based on chaos thresholds

Long Term (This Quarter)

□ Integrate chaos tests into CI/CD pipeline
□ Continuous profiling in staging environment
□ eBPF production debugging playbooks
□ Performance budgets and SLO definitions

Resources & Documentation
Internal Docs

• Complete Demo Guide: docs/SRE_DEMO_GUIDE.md (45 pages)
• Quick Cheatsheet: docs/SRE_DEMO_CHEATSHEET.md (5 pages)
• Flamegraph Guide: docs/FLAMEGRAPH_GUIDE.md
• Chaos Experiments: chaos-experiments/README.md (10 experiments)

External Resources

• Brendan Gregg’s eBPF Book: http://www.brendangregg.com/bpf-
performance-tools-book.html

• Principles of Chaos: https://principlesofchaos.org/

4

• SRE Book (Google): https://sre.google/books/
• pprof Tutorial: https://go.dev/blog/pprof

Training

• eBPF Tutorial: https://github.com/iovisor/bpf-docs
• Flamegraph Examples: http://www.brendangregg.com/flamegraphs.html
• Chaos Eng Workshop: https://principlesofchaos.org/workshops/

Demo Artifacts Available
� CPU flamegraph visualizations (SVG files) � All profile types (heap, goroutine,
mutex, allocs, block) � Chaos experiment detailed reports � eBPF trace samples
showing kernel behavior � Grafana dashboard screenshots (before/during/after)
� Performance baseline measurements

Access: Shared drive folder or contact [demo presenter]

FAQs
Q: Can we run this in production? A: Profiling and light chaos (CPU
throttle) - yes. Network partition and OOM kill - staging only.

Q: What’s the learning curve? A: Basic flamegraph reading: 1 hour. eBPF
basics: 1 day. Advanced chaos engineering: 1 week.

Q: Do we need to buy anything? A: No. All tools are free and open source.

Q: What about non-Go services? A: Flamegraphs work with Java, Python,
C++, Rust, etc. eBPF is language-agnostic.

Q: How do we start? A: Start with profiling (lowest risk, highest immediate
value). Add chaos tests in staging. Scale from there.

Q: What if something breaks during chaos? A: All experiments include
automatic cleanup. Services auto-recover via Docker restart policies.

Success Metrics We’ll Track
Engineering Metrics: - Mean Time To Resolution (MTTR): Target 60%
reduction - Pre-production bug detection: Target 80% of issues found in staging
- Performance optimization wins: Track cost savings

5

Business Metrics: - Infrastructure costs: Target 30-40% reduction via op-
timization - Incident count: Track reduction in production issues - Customer
impact: Measure reduction in user-facing outages

Adoption Metrics: - Team proficiency: Quarterly skills assessment - Tool
usage: Weekly profiling runs, monthly chaos tests - Runbook updates: Chaos
findings → operational procedures

Contact & Follow-Up
Demo Presenter: [Your name/email] Team Lead: [Team lead name/email]
Slack Channel: #sre-observability (proposed)

Scheduled Follow-Ups: - Team workshop: [Date TBD] - Review session:
[Date TBD] - Quarterly review: [Date TBD]

Key Quotes from Today
“40% of our CPU time is in database operations - that’s our biggest
optimization opportunity”

“5.8 seconds from network failure to full recovery - our retry logic is
working correctly”

“The system degraded gracefully under CPU pressure - slow, not
broken”

“eBPF showed us kernel behavior we couldn’t see from application
logs”

Thank you for attending! Questions? Let’s discuss.

Document prepared: November 2025 Technologies: bpftrace, pprof, FlameGraph,
Prometheus, Grafana, Docker Demo environment: simulated_exchange (Go
microservices)

6

	Chaos Engineering, Flamegraphs & eBPF Observability
	SRE Team Demonstration - Key Takeaways
	What We Demonstrated Today
	1. Flamegraph Profiling - Visual Performance Analysis
	2. Chaos Engineering: Network Partition - Failure Injection
	3. Chaos Engineering: CPU Throttling - Resource Pressure

	Business Impact
	Key Technical Insights
	Flamegraphs Revealed
	Network Chaos Results
	CPU Throttle Results

	eBPF - What It Showed Us
	Make Targets - Try It Yourself
	Profiling
	Chaos Experiments (10 Total)
	Utilities

	Tools We Used (All Free/Open Source)
	Industry Adoption
	Next Steps for Our Team
	Immediate (This Week)
	Short Term (This Month)
	Long Term (This Quarter)

	Resources & Documentation
	Internal Docs
	External Resources
	Training

	Demo Artifacts Available
	FAQs
	Success Metrics We’ll Track
	Contact & Follow-Up
	Key Quotes from Today

