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Executive Summary
What This Demo Shows

This demonstration showcases three critical SRE capabilities:

1. Chaos Engineering: Controlled failure injection to validate system re-
silience

2. Flamegraph Profiling: Visual performance analysis to identify bottle-
necks

3. eBPF Observability: Kernel-level tracing without code changes or
restarts

Business Value

Capability Business Impact
Chaos Engineering Proactively find issues before customers do;

reduce MTTR by 60%
Flamegraph Profiling Identify performance bottlenecks; optimize

infrastructure costs by 30-40%
eBPF Tracing Production debugging without overhead;

zero-downtime troubleshooting
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Technology Stack

• Chaos Tools: Custom scripts with iptables, tc netem, Docker constraints
• Profiling: Go pprof + Brendan Gregg’s FlameGraph
• eBPF: bpftrace for kernel-level observability
• Metrics: Prometheus + Grafana for visualization
• Platform: Docker microservices architecture

Key Outcomes

By the end of this demo, stakeholders will understand: - How to safely inject
failures to test resilience - How to visualize where applications spend CPU time
- How to trace system calls and kernel behavior without touching code - ROI of
investing in observability tooling

Prerequisites
System Requirements

Hardware: - 4+ CPU cores - 8GB+ RAM - 20GB+ disk space

Operating System: - Linux kernel 4.9+ (for eBPF support) - Ubuntu 20.04+,
RHEL 8+, or similar

Software (must be installed):

# Check versions
docker --version # Docker 20.10+
docker compose version # Docker Compose 2.0+
go version # Go 1.21+
sudo bpftrace --version # bpftrace 0.17+
jq --version # jq 1.6+
curl --version # curl 7.68+

Installation Commands

Ubuntu/Debian:

sudo apt-get update
sudo apt-get install -y docker.io docker-compose-v2 golang-go bpftrace jq curl
sudo usermod -aG docker $USER

RHEL/Fedora:

sudo dnf install -y docker docker-compose golang bpftrace jq curl
sudo systemctl enable --now docker
sudo usermod -aG docker $USER

Note: Log out and back in after adding user to docker group.
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Network Requirements

Ensure the following ports are available: - 80 - Caddy reverse proxy (HTTPS
redirect) - 443 - Caddy reverse proxy (HTTPS) - 3000 - Grafana dashboards -
8080 - Trading API - 8081 - Market Simulator - 8082 - Order Flow Simulator -
9090 - Prometheus

Permissions

Some chaos experiments require sudo: - Network partition (iptables) - OOM
kill (BPF monitoring) - CPU throttling (cgroup limits) - Disk I/O (stress-ng) -
Network latency (tc netem)

Pre-Demo Setup
Step 1: Clone and Navigate to Project

cd /home/andy/simulated_exchange
git status # Verify clean working directory

Step 2: Start All Services

# Start Docker microservices
docker compose -f docker-compose.yml -f docker/docker-compose.caddy.yml up -d

# Wait for services to initialize (30 seconds)
sleep 30

# Verify all services are running
docker compose ps

Expected Output:

NAME STATUS
simulated-exchange-caddy Up (healthy)
simulated-exchange-grafana Up
simulated-exchange-market-simulator Up
simulated-exchange-nginx Up
simulated-exchange-order-flow-simulator Up
simulated-exchange-postgres Up (healthy)
simulated-exchange-prometheus Up
simulated-exchange-redis Up (healthy)
simulated-exchange-trading-api Up
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Step 3: Verify Service Health

# Check Trading API
curl -s http://localhost:8080/health | jq '.'

# Expected: {"status":"healthy","database":"connected",...}

# Check Market Simulator
curl -s http://localhost:8081/health | jq '.'

# Check Order Flow Simulator
curl -s http://localhost:8082/health | jq '.'

# Check Prometheus
curl -s http://localhost:9090/-/healthy

# Expected: Prometheus is Healthy.

Step 4: Start Background Load Generation

# Start continuous realistic load (runs in background)
./generate-load.sh 3600 30 > /tmp/load-gen.log 2>&1 &

# Save the PID for cleanup later
echo $! > /tmp/load-gen.pid

# Verify load is generating
sleep 5
curl -s --data-urlencode 'query=rate(orders_total[1m])' \
http://localhost:9090/api/v1/query | jq '.data.result[0].value[1]'

# Expected: A number > 0 (e.g., "1.5" = 1.5 orders/sec)

Step 5: Verify Grafana Dashboards

Open browser to Grafana:

# Open Grafana (or navigate manually to http://localhost:3000)
xdg-open http://localhost:3000 # Linux
# open http://localhost:3000 # macOS

Login: admin / admin123

Verify these dashboards exist: 1. System Overview 2. Trading API Perfor-
mance 3. Market Simulator 4. Order Flow Simulator 5. Database Performance
6. Redis Cache Performance

Check data is flowing: - Look for order rate metrics > 0 - Check latency
graphs showing activity - Verify service health indicators are green
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Step 6: Pre-Generate Test Flamegraphs

# Generate baseline flamegraphs before demo
make profile-cpu

# Verify flamegraph was created
ls -lh flamegraphs/cpu_profile_*.svg

# Expected: SVG file ~500KB-2MB in size

Step 7: Verify Chaos Experiment Scripts

# Check all chaos experiments are executable
ls -la chaos-experiments/*.sh

# Run preflight check
cd chaos-experiments
./00-preflight-check.sh

# Expected: All checks pass (Docker, bpftrace, etc.)
cd ..

Step 8: Prepare Presentation Materials

# Open documentation in browser tabs
xdg-open docs/FLAMEGRAPH_GUIDE.md # Background reading
xdg-open chaos-experiments/README.md # Experiment catalog
xdg-open http://localhost:3000 # Grafana

# Open a flamegraph for reference
xdg-open flamegraphs/cpu_profile_*.svg

# Arrange windows: Grafana on left, flamegraph on right, terminal at bottom

Step 9: Pre-Demo Checklist

Run this checklist 10 minutes before demo:

#!/bin/bash
echo "Pre-Demo Checklist"
echo "=================="

# 1. All services running?
if [ $(docker compose ps --status running | wc -l) -ge 8 ]; then
echo "� All Docker services running"

else
echo "� Some services not running - run: docker compose up -d"
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fi

# 2. Load generating?
if curl -s --data-urlencode 'query=rate(orders_total[1m])' \

http://localhost:9090/api/v1/query | grep -q '"value"'; then
echo "� Load generation active"

else
echo "� No load - run: ./generate-load.sh 3600 30 &"

fi

# 3. Grafana accessible?
if curl -s http://localhost:3000/api/health | grep -q 'ok'; then
echo "� Grafana accessible"

else
echo "� Grafana not responding"

fi

# 4. bpftrace installed?
if command -v bpftrace &> /dev/null; then
echo "� bpftrace installed"

else
echo "� bpftrace not found - run: sudo apt-get install bpftrace"

fi

# 5. Flamegraphs exist?
if ls flamegraphs/*.svg &> /dev/null; then
echo "� Baseline flamegraphs ready"

else
echo "� No flamegraphs - run: make profile-cpu"

fi

echo ""
echo "Ready to present? (y/n)"

Demo Environment Overview
Architecture Diagram

���������������������������������������������������������������
� EXTERNAL ACCESS �
� http://localhost (Caddy Proxy) �
���������������������������������������������������������������

�
���������������������������������������������������������������
� PRESENTATION LAYER �
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� ��������������� ���������������� ���������������� �
� � Grafana � � Prometheus � � Nginx � �
� � :3000 � � :9090 � � � �
� ��������������� ���������������� ���������������� �
���������������������������������������������������������������

�
���������������������������������������������������������������
� APPLICATION LAYER �
� ��������������� ���������������� ���������������� �
� � Trading API � � Market � � Order Flow � �
� � :8080 � � Simulator � � Simulator � �
� � � � :8081 � � :8082 � �
� ��������������� ���������������� ���������������� �
���������������������������������������������������������������

�
���������������������������������������������������������������
� DATA LAYER �
� ��������������� ���������������� �
� � PostgreSQL � � Redis � �
� � :5432 � � :6379 � �
� ��������������� ���������������� �
���������������������������������������������������������������

Services Description

Service Purpose Port Metrics
Trading API Order processing,

matching engine
8080 /metrics

Market
Simulator

Price generation,
market data

8081 /metrics

Order Flow
Simulator

Continuous order
generation

8082 /metrics

PostgreSQL Order persistence,
historical data

5432 N/A

Redis Caching, event bus
(pub/sub)

6379 N/A

Prometheus Metrics collection,
time-series DB

9090 N/A

Grafana Visualization,
dashboards

3000 N/A

Nginx Reverse proxy, rate
limiting

80 N/A

Caddy HTTPS
termination,
external access

443 N/A
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Current System State

Before starting the demo, verify the baseline:

# Check current order rate
curl -s --data-urlencode 'query=rate(orders_total[1m])' \
http://localhost:9090/api/v1/query | \
jq '.data.result[0].value[1]'

# Check average latency
curl -s --data-urlencode 'query=rate(order_processing_duration_seconds_sum[1m])/rate(order_processing_duration_seconds_count[1m])' \
http://localhost:9090/api/v1/query | \
jq '.data.result[0].value[1]'

# Check service health
curl -s http://localhost:8080/health | jq '.status'

Baseline Metrics (record these): - Order rate: ~30-50 orders/min - Average
latency: ~50-200ms - Service health: “healthy” - Database connections: 5-10

Demonstration Flow
Overview Timeline (45 minutes)

Time Phase Duration Focus
0:00-0:05 Introduction 5 min Problem statement, goals
0:05-0:10 Environment Tour 5 min Show architecture, Grafana
0:10-0:20 Flamegraph Demo 10 min CPU profiling, hot paths
0:20-0:30 Chaos: Network 10 min eBPF tracing, failures
0:30-0:40 Chaos: CPU 10 min Performance degradation
0:40-0:45 Wrap-up 5 min Q&A, next steps

Phase 1: Introduction (5 minutes)

Script Opening (1 min): > “Today we’re demonstrating three critical SRE
capabilities: chaos engineering, flamegraph profiling, and eBPF observability.
These tools help us understand system behavior under stress, identify perfor-
mance bottlenecks, and debug production issues without downtime.”

Problem Statement (2 min): > “Current challenges: > - We discover issues
in production, not in testing > - Performance problems are hard to diagnose
> - We can’t trace system behavior without instrumenting code > - Debugging
production requires restarts or log analysis”
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Solution (2 min): > “These tools solve those problems: > - Chaos engineering:
Test failure scenarios safely before they happen > - Flamegraphs: Visualize
exactly where CPU time is spent > - eBPF: Trace kernel behavior in real-time
with <1% overhead”

What You’ll See: 1. Real-time profiling of a live trading system 2. Controlled
failure injection with automatic recovery 3. Kernel-level tracing without code
changes 4. Visual analysis of performance bottlenecks

Phase 2: Environment Tour (5 minutes)

Show Grafana Dashboards Navigate to: http://localhost:3000

Script: > “This is our microservices trading exchange. We have three main
services processing orders, simulating market data, and generating continuous
load.”

Point out: 1. System Overview Dashboard: - Show current order rate
(~30-50/min) - Point to latency metrics (~50-200ms) - Service health indicators
(all green)

2. Trading API Performance Dashboard:
• Request rate graphs
• Latency percentiles (p50, p95, p99)
• Error rate (should be near 0%)

Talking Points: - “These are our baseline metrics during normal operation” -
“We’ll watch these metrics change as we inject failures” - “Notice the system is
currently healthy - all green indicators”

Show Live Architecture

# Show running containers
docker compose ps

# Show resource usage
docker stats --no-stream

Script: > “We have 9 microservices running in Docker containers. Each service
exposes Prometheus metrics that Grafana visualizes. This is production-like
architecture.”

Phase 3: Flamegraph Profiling Demo (10 minutes)

Part A: Baseline CPU Profile (3 min) Script: > “Let’s start by profiling
our Trading API to see where it spends CPU time. This is running live against
production traffic.”
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Execute:

make profile-cpu

What Happens: 1. Connects to Trading API on port 8080 2. Collects 30
seconds of CPU profile data 3. Converts to flamegraph SVG 4. Opens in
browser automatically

Output:

� Generating CPU flamegraph for trading-api
================================================

Profiling service on port 8080 for 30 seconds...
�������������������������������� 30s

� Profile data collected: 2.4MB
� Converting to flamegraph...
� Flamegraph generated: flamegraphs/cpu_profile_20251115-112030.svg

Opening in browser...

Part B: Analyze Flamegraph (5 min) When the flamegraph opens,
explain:

“Each box represents a function. Width = CPU time spent. Height
= call stack depth.”

Walk through:

1. Find the widest boxes at the bottom: > “This shows our order
processing hot path - the most expensive code”

2. Hover over boxes: > “See the exact function name and percentage of
total CPU time”

3. Identify bottlenecks:

Look for:
- Database query functions (usually 30-40% of CPU)
- JSON marshaling/unmarshaling (10-15%)
- Order validation logic (10-20%)
- Network I/O (5-10%)

4. Click to zoom: > “We can zoom into specific code paths. Let’s look at
the database layer.”

Key Insights to Point Out: - “40% of CPU time is in database operations”
- “JSON serialization takes 12% - we could optimize this” - “Order validation is
happening synchronously - could be parallelized”
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Talking Points: - � “No code changes required - just attach profiler” - � “Visual
representation makes bottlenecks obvious” - � “Can profile production with <5%
overhead” - � “Baseline for before/after optimization comparisons”

Part C: Generate All Profile Types (2 min) Execute:

make profile-all

Script: > “We can profile more than just CPU. Let’s generate heap, goroutine,
and mutex profiles.”

Output shows:

Generating all profile types...
� CPU profile
� Heap profile (memory allocations)
� Goroutine profile (concurrency state)
� Mutex profile (lock contention)
� Allocs profile (allocation patterns)
� Block profile (blocking operations)

All profiles saved to: flamegraphs/

Quick explanation: - CPU: Where time is spent - Heap: What’s allocat-
ing memory - Goroutine: How many concurrent operations - Mutex: Lock
contention (parallel performance)

Phase 4: Chaos Engineering - Network Partition (10 minutes)

Introduction (1 min) Script: > “Now let’s inject a real failure. We’ll
partition the network between our Trading API and the database using iptables.
This simulates a network outage or firewall issue.”

“Watch the Grafana dashboard - you’ll see the failure happen in
real-time.”

Position screens: - Left monitor: Grafana dashboard - Right monitor: Termi-
nal with chaos script

Execute Chaos Experiment (7 min) Run:

make chaos-network-partition

Narrate as it runs:

Step 1 - Setup (30 sec):

[11:30:45] �������������������������������������������
[11:30:45] CHAOS EXPERIMENT: Network Partition
[11:30:45] �������������������������������������������
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[11:30:45] � Docker containers running
[11:30:45] � bpftrace available
[11:30:45] Starting BPF network monitoring...

“The script is setting up eBPF tracing to watch TCP connections”

Step 2 - Baseline (30 sec):

[11:30:50] Collecting baseline metrics...
[11:30:50] Current order rate: 2.5 orders/sec
[11:30:50] Database connections: 8
[11:30:50] Average latency: 125ms

“Capturing baseline before we break things”

Step 3 - Inject Failure (15 sec):

[11:31:00] � INJECTING FAILURE: Network Partition
[11:31:00] Blocking traffic: trading-api → postgres (port 5432)
[11:31:00] Running: iptables -A DOCKER -p tcp --dport 5432 -j DROP
[11:31:00] � Network partition active

Point to Grafana: “Watch the dashboard - connection attempts
will start failing NOW”

Step 4 - Observe Failure (2 min):

[11:31:05] Monitoring system behavior...

[11:31:10] eBPF Trace: TCP SYN to 172.18.0.3:5432 (retransmit #1)
[11:31:15] eBPF Trace: TCP SYN to 172.18.0.3:5432 (retransmit #2)
[11:31:20] eBPF Trace: TCP SYN to 172.18.0.3:5432 (retransmit #3)
[11:31:25] eBPF Trace: Connection timeout - ETIMEDOUT (110)

[11:31:30] System state:
- Order submissions: FAILING (database unreachable)
- Cache: ACTIVE (serving stale data)
- Health check: DEGRADED
- Error rate: 100%

Explain eBPF output: “See these TCP retransmissions? That’s
the kernel trying to reconnect. eBPF lets us see this without touch-
ing our application code. We’re watching kernel networking in real-
time.”

In Grafana, point out: - Error rate spikes to 100% - Latency graph shows
timeouts - Database connection count drops to 0 - Service health indicator turns
red

Step 5 - Recovery (3 min):

[11:31:40] Failure duration: 90 seconds
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[11:31:40] Beginning recovery...

[11:31:45] Removing network partition...
[11:31:45] Running: iptables -D DOCKER -p tcp --dport 5432 -j DROP
[11:31:45] � Network partition removed

[11:31:50] eBPF Trace: TCP SYN to 172.18.0.3:5432 - SUCCESS
[11:31:50] eBPF Trace: Connection established in 1.2s
[11:31:52] First successful order processed
[11:31:55] Service health: HEALTHY

[11:32:00] Recovery metrics:
- Time to first connection: 1.2s
- Time to first order: 2.5s
- Full recovery: 5.8s
- Orders lost: 0 (queued during outage)

In Grafana: “See the recovery? Error rate drops immediately, la-
tency returns to normal, connections re-established.”

Step 6 - Summary (30 sec):

����������������������������������������������������������
� EXPERIMENT SUMMARY �
����������������������������������������������������������

KEY FINDINGS:
1. Failure detection: < 1 second (first retransmit)
2. Recovery time: 5.8 seconds (network heal → full operation)
3. Data loss: 0 orders (queued and processed after recovery)
4. Retry behavior: Exponential backoff observed via eBPF

eBPF INSIGHTS:
- 15 TCP retransmission attempts observed
- Connection timeout after 25 seconds (kernel default)
- Immediate reconnection when partition healed
- No packet loss on other services (isolated failure)

RECOMMENDATIONS:
� Connection retry logic working correctly
� Consider reducing timeout from 25s to 10s
� Cache strategy effective during outage
� Health checks accurately reflect database state

Full report: /tmp/chaos-exp-02-20251115-113000.log

Discussion (2 min) Ask the audience: > “What did we learn?”
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Key takeaways: 1. � eBPF showed kernel behavior: TCP retries, time-
outs visible without code 2. � System recovered automatically: No manual
intervention needed 3. � Metrics provided insight: Grafana showed real-time
failure state 4. � Safe to test: Cleanup happens automatically

Business value: > “We just validated our retry logic and measured actual
recovery time. If this happens in production, we know exactly what to expect:
~6 seconds to recover, no data loss.”

Phase 5: Chaos Engineering - CPU Throttling (10 minutes)

Introduction (1 min) Script: > “Network failures are dramatic, but grad-
ual performance degradation is more common. Let’s throttle CPU to see how
the system behaves under resource pressure.”

“This simulates: noisy neighbor in cloud, insufficient resources, or
traffic spike beyond capacity.”

Execute Chaos Experiment (7 min) Run:

make chaos-cpu-throttle

Narrate as it runs:

Step 1 - Setup:

[11:35:00] �������������������������������������������
[11:35:00] CHAOS EXPERIMENT: CPU Throttling
[11:35:00] �������������������������������������������
[11:35:00] Starting BPF scheduler monitoring...

Step 2 - Baseline:

[11:35:05] Baseline metrics:
- CPU usage: 25% (0.25 cores)
- Latency p50: 120ms
- Latency p95: 250ms
- Order throughput: 30 orders/min

“Normal operation uses about 25% of one CPU core”

Step 3 - Throttle CPU:

[11:35:10] � Limiting Trading API to 10% CPU (0.1 cores)
[11:35:10] Running: docker update --cpus=0.1 simulated-exchange-trading-api
[11:35:10] � CPU limit applied

Point to Grafana: “Watch latency increase as requests queue wait-
ing for CPU”

Step 4 - Observe Degradation (3 min):
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[11:35:20] System behavior under CPU pressure:

Time | CPU % | p50 Latency | p95 Latency | Queue Depth
-----|-------|-------------|-------------|-------------
10s | 100% | 250ms | 500ms | 5
20s | 100% | 450ms | 950ms | 12
30s | 100% | 680ms | 1400ms | 24
40s | 100% | 920ms | 1850ms | 38
50s | 100% | 1150ms | 2300ms | 51

[11:36:00] eBPF Scheduler Trace:
- Context switches: 15,234 (3x normal)
- Runqueue wait time: avg 850ms (was 2ms)
- Time spent throttled: 90% of attempts
- Scheduler delays: p95 = 1.2 seconds

Explain: “eBPF scheduler tracing shows the kernel is throttling our
process 90% of the time. Requests are queuing up, waiting for CPU
time. Latency has increased 10x, but notice - no hard failures. The
system degrades gracefully.”

In Grafana show: - Latency graph climbing steadily - Request queue depth
increasing - No errors (100% success rate despite slowness) - CPU utilization
pegged at 100% (of the limit)

Step 5 - Recovery:

[11:36:10] Restoring normal CPU allocation...
[11:36:10] Running: docker update --cpus=2.0 simulated-exchange-trading-api
[11:36:10] � CPU limit removed

[11:36:15] Recovery in progress:
- Queue draining: 51 → 38 → 24 → 12 → 5 → 0
- Latency decreasing: 1150ms → 680ms → 250ms → 120ms
- CPU usage: 85% (processing backlog) → 25% (normal)

[11:36:30] � Full recovery: System back to baseline

“See how quickly it recovers once we remove the constraint? Queued
requests process rapidly, latency returns to normal.”

Step 6 - Summary:

����������������������������������������������������������
� EXPERIMENT SUMMARY �
����������������������������������������������������������

KEY FINDINGS:
1. Graceful degradation: Slowness, not failures
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2. Queue buildup: Linear increase under sustained pressure
3. Recovery: 20 seconds to process backlog after constraint removed
4. No data loss: All requests eventually processed

eBPF INSIGHTS:
- Scheduler delays visible via BPF tracing
- Context switch rate 3x higher under pressure
- 90% of time spent waiting for CPU quota
- Kernel scheduler working as designed (fair allocation)

PERFORMANCE IMPACT:
- Latency increased 10x (120ms → 1150ms)
- Throughput maintained (queued, not dropped)
- Error rate: 0% (slow != broken)
- User experience: Severely degraded but functional

RECOMMENDATIONS:
� Set alerts at p95 latency > 500ms
� Auto-scale trigger at 70% CPU sustained for 60s
� Current capacity: ~3x current load before degradation
� Queue unbounded - consider max queue size for backpressure

Discussion (2 min) Key insights: 1. � eBPF showed scheduler be-
havior: Context switches, runqueue wait times 2. � Graceful degradation:
System slowed but didn’t fail 3. � Measurable capacity: Know exactly when
performance degrades 4. � Predictable recovery: Backlog processes quickly
when resources restored

Capacity planning value: > “We now know the system can handle 3x current
load before latency becomes unacceptable. We can set auto-scaling triggers at
70% CPU to maintain good performance.”

Phase 6: Wrap-Up & Next Steps (5 minutes)

Summary of What We Demonstrated Recap (2 min):

1. Flamegraph Profiling: - � Visual performance analysis with zero code
changes - � Identified hot paths: 40% in database, 12% in JSON - � Actionable
insights for optimization - � Multiple profile types (CPU, heap, mutex, etc.)

2. Chaos Engineering - Network: - � Controlled failure injection (network
partition) - � eBPF traced TCP retries and timeouts at kernel level - � Validated
retry logic and recovery time (5.8s) - � Grafana showed real-time failure state

3. Chaos Engineering - CPU: - � Gradual performance degradation under
resource pressure - � eBPF traced scheduler delays and context switches - �
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Measured capacity limits (3x current load) - � Graceful degradation (slow !=
broken)

Business Value (1 min)

Capability Investment ROI
Chaos Engineering 1 week setup Find issues

before
customers;
reduce
MTTR 60%

Flamegraph Profiling 1 day setup Optimize
perfor-
mance;
reduce cloud
costs
30-40%

eBPF Observability 2 days training Debug
production
without
restarts;
<1%
overhead

Total Investment: ~2 weeks for team training and integration Expected
ROI: 6 months (via incident reduction + cost optimization)

Next Steps (2 min) Immediate (This Week): 1. Run remaining chaos ex-
periments: - make chaos-oom-kill (memory pressure) - make chaos-disk-io
(I/O starvation) - make chaos-cascade (multi-service failure)

2. Review generated artifacts:
• Flamegraphs in flamegraphs/
• Chaos logs in chaos-results/
• BPF traces in /tmp/chaos-exp-*.log.bpf

Short Term (This Month): 1. Identify 3 production optimization opportu-
nities from flamegraphs 2. Document baseline performance metrics 3. Create
runbooks based on chaos experiment findings 4. Schedule team training on
bpftrace basics

Long Term (This Quarter): 1. Integrate chaos testing into CI/CD pipeline
2. Set up continuous profiling in staging environment 3. Create eBPF-based
production debugging playbooks 4. Establish performance budgets based on
capacity testing
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Resources to Share Documentation: - docs/FLAMEGRAPH_GUIDE.md -
Complete profiling guide - chaos-experiments/README.md - All 10 experi-
ments documented - chaos-experiments/QUICKSTART.md - Quick reference -
docs/SRE_RUNBOOK.md - Operational procedures

External Resources: - Brendan Gregg’s eBPF Book - Principles of Chaos
Engineering - Go pprof Documentation

Q&A (Time Remaining) Common Questions:

Q: Can we run chaos experiments in production? > A: Start in stag-
ing. Once confident, run low-impact experiments (like CPU throttling) during
low-traffic windows. Network partition and OOM kill are too disruptive for
production.

Q: What’s the performance impact of eBPF? > A: <1% CPU overhead.
eBPF runs in kernel space and is extremely efficient. Safe for production use.

Q: How often should we profile? > A: Continuously in staging, weekly in
production during load tests, and on-demand during incident response.

Q: What if we don’t use Go? > A: Flamegraphs work with any language
(Java, Python, C++, etc.). Tools differ but concepts are the same.

Q: Cost to implement? > A: Zero software costs (all open source). Invest-
ment is team training time (~2 weeks) and some CI/CD integration work.

Post-Demo Actions
Immediate Cleanup

# Stop load generator
if [ -f /tmp/load-gen.pid ]; then
kill $(cat /tmp/load-gen.pid)
rm /tmp/load-gen.pid

fi

# Verify all services recovered
docker compose ps

# Clean up any chaos experiment remnants
docker compose restart

# Archive demo artifacts
mkdir -p ~/demo-artifacts-$(date +%Y%m%d)
cp -r flamegraphs/ ~/demo-artifacts-$(date +%Y%m%d)/
cp -r chaos-results/ ~/demo-artifacts-$(date +%Y%m%d)/
cp /tmp/chaos-exp-*.log ~/demo-artifacts-$(date +%Y%m%d)/ 2>/dev/null || true

18

http://www.brendangregg.com/bpf-performance-tools-book.html
https://principlesofchaos.org/
https://principlesofchaos.org/
https://pkg.go.dev/net/http/pprof


Share Artifacts

Create a demo package:

cd ~/demo-artifacts-$(date +%Y%m%d)

# Create summary document
cat > DEMO_SUMMARY.md << 'EOF'
# SRE Demo - Chaos Engineering, Flamegraphs, and eBPF

## Date
$(date)

## Attendees
- [List attendees]

## What We Demonstrated
1. CPU flamegraph profiling (10 min)
2. Network partition chaos test (10 min)
3. CPU throttling chaos test (10 min)

## Key Findings
- Database operations consume 40% of CPU
- Network failure recovery time: 5.8 seconds
- System capacity: 3x current load before degradation
- Graceful degradation confirmed under CPU pressure

## Artifacts Included
- CPU flamegraphs (SVG files)
- Chaos experiment logs
- eBPF traces
- Grafana dashboard screenshots

## Next Steps
[Document action items from demo discussion]
EOF

# Compress for sharing
tar -czf ../sre-demo-$(date +%Y%m%d).tar.gz .
cd ..

echo "Demo package ready: sre-demo-$(date +%Y%m%d).tar.gz"

Follow-Up Email Template

Subject: SRE Demo Follow-up - Chaos Engineering & Observability Tools
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Hi Team,

Thank you for attending today's demonstration of chaos engineering,
flamegraph profiling, and eBPF observability tools.

DEMO HIGHLIGHTS:
• Profiled live system with zero code changes
• Injected network failures and observed auto-recovery (5.8s)
• Measured system capacity (3x current load)
• Traced kernel behavior with eBPF

KEY FINDINGS:
• 40% of CPU time in database operations (optimization opportunity)
• Network partition recovery validated (retry logic working correctly)
• Graceful degradation under CPU pressure (no hard failures)
• System capacity well understood for scaling decisions

ARTIFACTS ATTACHED:
• Flamegraph visualizations
• Chaos experiment reports
• eBPF trace samples
• Demo guide document

NEXT STEPS:
1. Review flamegraphs for optimization opportunities (by [date])
2. Run remaining chaos experiments in staging (by [date])
3. Schedule team training on bpftrace (proposed: [date])
4. Integrate profiling into CI/CD pipeline (Q[X] goal)

RESOURCES:
• Demo guide: docs/SRE_DEMO_GUIDE.md
• Chaos experiments: chaos-experiments/README.md
• Flamegraph guide: docs/FLAMEGRAPH_GUIDE.md

Questions? Let's discuss in our next team meeting or reach out directly.

Best regards,
[Your name]

Troubleshooting
Services Not Starting

Symptom: docker compose ps shows services as “Exited” or “Restarting”
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Diagnosis:

# Check logs for specific service
docker logs simulated-exchange-trading-api

# Check all services
docker compose logs --tail=50

Common Issues:

1. Port conflicts:

# Check what's using ports
sudo lsof -i :8080
sudo lsof -i :5432

# Kill conflicting process
sudo kill -9 <PID>

2. Database not ready:

# Wait for postgres health check
docker compose up -d postgres
sleep 30
docker compose up -d

3. Out of disk space:

df -h
docker system prune -a # Careful: removes unused images

Grafana Shows No Data

Symptom: Dashboards load but graphs are empty

Diagnosis:

# Check Prometheus is scraping
curl http://localhost:9090/api/v1/targets

# Should show all targets "up"

Fix:

# Restart Prometheus
docker compose restart prometheus

# Verify metrics endpoints
curl http://localhost:8080/metrics
curl http://localhost:8081/metrics
curl http://localhost:8082/metrics
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# Check Prometheus config
docker exec simulated-exchange-prometheus cat /etc/prometheus/prometheus.yml

Flamegraph Generation Fails

Symptom: make profile-cpu fails with “connection refused”

Diagnosis:

# Check service is running
docker ps | grep trading-api

# Check pprof endpoint
curl http://localhost:8080/debug/pprof/

Fix:

# Ensure services fully started
docker compose restart trading-api
sleep 10

# Try manual profiling
./scripts/generate-flamegraph.sh cpu 30 8080

Chaos Experiment Hangs

Symptom: Chaos script runs but never completes

Diagnosis:

# Check if cleanup trap is working
ps aux | grep chaos

# Check Docker status
docker compose ps

Fix:

# Kill the script
pkill -f chaos-experiments

# Manually cleanup
docker compose restart
sudo iptables -F DOCKER # Clear any iptables rules
docker update --cpus=2.0 --memory=2g simulated-exchange-trading-api

bpftrace Not Working

Symptom: “bpftrace: command not found” or permission errors

Diagnosis:
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# Check if installed
which bpftrace

# Check kernel version
uname -r # Need 4.9+

# Check permissions
sudo bpftrace --version

Fix:

# Install bpftrace
sudo apt-get install -y bpftrace # Ubuntu/Debian
sudo dnf install -y bpftrace # RHEL/Fedora

# If kernel too old
sudo apt-get install -y linux-headers-$(uname -r)

# Add user to tracing group (optional)
sudo usermod -aG tracing $USER

Load Generator Not Working

Symptom: No orders visible in Grafana after starting load generator

Diagnosis:

# Check if process running
ps aux | grep generate-load

# Check trading API
curl http://localhost:8080/health

# Check Prometheus query
curl -s --data-urlencode 'query=rate(orders_total[1m])' \
http://localhost:9090/api/v1/query

Fix:

# Restart load generator
pkill -f generate-load
./generate-load.sh 3600 30 &

# Verify orders submitting
curl -X POST http://localhost:8080/orders \
-H "Content-Type: application/json" \
-d '{"symbol":"BTCUSD","type":"MARKET","side":"BUY","quantity":1.0}'
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Appendix
A. Complete Make Target Reference

Profiling Targets:

make profile-cpu # 30s CPU profile
make profile-cpu-long # 60s CPU profile
make profile-heap # Memory allocations
make profile-goroutine # Concurrency state
make profile-allocs # Allocation patterns
make profile-block # Blocking operations
make profile-mutex # Lock contention
make profile-all # All of the above
make profile-view # Open flamegraphs in browser
make profile-analyze # AI analysis of latest profile

Chaos Targets:

make chaos-all # Run all 10 experiments (60+ min)
make chaos-db-death # Database sudden death
make chaos-network-partition # Network partition (eBPF)
make chaos-oom-kill # Memory OOM kill
make chaos-cpu-throttle # CPU throttling
make chaos-disk-io # Disk I/O starvation (eBPF)
make chaos-conn-pool # Connection pool exhaustion
make chaos-redis # Redis cache failure
make chaos-nginx # Nginx proxy failure
make chaos-latency # Network latency injection
make chaos-cascade # Multi-service cascade
make chaos-flamegraph # Flamegraph during chaos

Utility Targets:

make help # Show all targets
make setup # Initialize project
make clean # Clean build artifacts
make profile-help # Profiling documentation

B. Prometheus Query Examples

Order Rate:

rate(orders_total[1m])

Average Latency:

rate(order_processing_duration_seconds_sum[1m]) /
rate(order_processing_duration_seconds_count[1m])

Error Rate:

24



rate(orders_total{status="FAILED"}[1m]) /
rate(orders_total[1m])

95th Percentile Latency:

histogram_quantile(0.95,
rate(order_processing_duration_seconds_bucket[1m]))

Database Connection Count:

database_connections_active

C. Grafana Dashboard URLs

After logging in (admin/admin123):

• System Overview: http://localhost:3000/d/system-overview
• Trading API: http://localhost:3000/d/trading-api
• Market Simulator: http://localhost:3000/d/market-simulator
• Order Flow: http://localhost:3000/d/order-flow
• Database: http://localhost:3000/d/database
• Redis: http://localhost:3000/d/redis

D. Useful bpftrace One-Liners

TCP connections:

sudo bpftrace -e 'kprobe:tcp_connect { printf("%s -> %s\n", comm, ntop(args->sk->__sk_common.skc_daddr)); }'

File opens:

sudo bpftrace -e 'tracepoint:syscalls:sys_enter_openat { printf("%s: %s\n", comm, str(args->filename)); }'

Process CPU time:

sudo bpftrace -e 'profile:hz:99 /comm == "trading-api"/ { @[ustack] = count(); }'

Memory allocations:

sudo bpftrace -e 'tracepoint:kmem:kmalloc { @[comm] = sum(args->bytes_alloc); }'

E. Docker Compose Quick Reference

Start all services:

docker compose -f docker-compose.yml -f docker/docker-compose.caddy.yml up -d

View logs:

docker compose logs -f trading-api
docker compose logs --tail=100

Restart service:

docker compose restart trading-api

25



Stop all:

docker compose down

Clean everything:

docker compose down -v # Remove volumes too
docker system prune -a # Clean unused images

F. Emergency Recovery

If demo environment is completely broken:

#!/bin/bash
# Nuclear option: Complete reset

# Stop everything
docker compose down -v

# Remove chaos artifacts
sudo iptables -F DOCKER
sudo tc qdisc del dev docker0 root 2>/dev/null || true

# Clean Docker
docker system prune -f

# Restart from scratch
docker compose -f docker-compose.yml -f docker/docker-compose.caddy.yml up -d

# Wait for initialization
sleep 60

# Verify
docker compose ps
curl http://localhost:8080/health
curl http://localhost:3000/api/health

echo "Environment reset complete"

Document Version History

Version Date Changes Author
1.0 2025-11-15 Initial creation [Your name]
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License & Attribution
This demonstration guide is part of the Simulated Exchange SRE training pro-
gram.

Tools Used: - Flamegraphs: Brendan Gregg (https://www.brendangregg.com/flamegraphs.html)
- bpftrace: IO Visor Project (https://github.com/iovisor/bpftrace) -
Prometheus: CNCF Project (https://prometheus.io/) - Grafana: Grafana Labs
(https://grafana.com/)

End of Document
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