
SRE Team Demonstration Guide
Chaos Engineering, Flamegraphs, and eBPF Tooling
Target Audience: SRE Team and Management Objective: Demonstrate
value of chaos engineering, performance profiling, and eBPF observability Du-
ration: 45-60 minutes Date Prepared: November 2025

Table of Contents
1. Executive Summary
2. Prerequisites
3. Pre-Demo Setup
4. Demo Environment Overview
5. Demonstration Flow
6. Post-Demo Actions
7. Troubleshooting
8. Appendix

Executive Summary
What This Demo Shows

This demonstration showcases three critical SRE capabilities:

1. Chaos Engineering: Controlled failure injection to validate system re-
silience

2. Flamegraph Profiling: Visual performance analysis to identify bottle-
necks

3. eBPF Observability: Kernel-level tracing without code changes or
restarts

Business Value

Capability Business Impact
Chaos Engineering Proactively find issues before customers do;

reduce MTTR by 60%
Flamegraph Profiling Identify performance bottlenecks; optimize

infrastructure costs by 30-40%
eBPF Tracing Production debugging without overhead;

zero-downtime troubleshooting

1

Technology Stack

• Chaos Tools: Custom scripts with iptables, tc netem, Docker constraints
• Profiling: Go pprof + Brendan Gregg’s FlameGraph
• eBPF: bpftrace for kernel-level observability
• Metrics: Prometheus + Grafana for visualization
• Platform: Docker microservices architecture

Key Outcomes

By the end of this demo, stakeholders will understand: - How to safely inject
failures to test resilience - How to visualize where applications spend CPU time
- How to trace system calls and kernel behavior without touching code - ROI of
investing in observability tooling

Prerequisites
System Requirements

Hardware: - 4+ CPU cores - 8GB+ RAM - 20GB+ disk space

Operating System: - Linux kernel 4.9+ (for eBPF support) - Ubuntu 20.04+,
RHEL 8+, or similar

Software (must be installed):

Check versions
docker --version # Docker 20.10+
docker compose version # Docker Compose 2.0+
go version # Go 1.21+
sudo bpftrace --version # bpftrace 0.17+
jq --version # jq 1.6+
curl --version # curl 7.68+

Installation Commands

Ubuntu/Debian:

sudo apt-get update
sudo apt-get install -y docker.io docker-compose-v2 golang-go bpftrace jq curl
sudo usermod -aG docker $USER

RHEL/Fedora:

sudo dnf install -y docker docker-compose golang bpftrace jq curl
sudo systemctl enable --now docker
sudo usermod -aG docker $USER

Note: Log out and back in after adding user to docker group.

2

Network Requirements

Ensure the following ports are available: - 80 - Caddy reverse proxy (HTTPS
redirect) - 443 - Caddy reverse proxy (HTTPS) - 3000 - Grafana dashboards -
8080 - Trading API - 8081 - Market Simulator - 8082 - Order Flow Simulator -
9090 - Prometheus

Permissions

Some chaos experiments require sudo: - Network partition (iptables) - OOM
kill (BPF monitoring) - CPU throttling (cgroup limits) - Disk I/O (stress-ng) -
Network latency (tc netem)

Pre-Demo Setup
Step 1: Clone and Navigate to Project

cd /home/andy/simulated_exchange
git status # Verify clean working directory

Step 2: Start All Services

Start Docker microservices
docker compose -f docker-compose.yml -f docker/docker-compose.caddy.yml up -d

Wait for services to initialize (30 seconds)
sleep 30

Verify all services are running
docker compose ps

Expected Output:

NAME STATUS
simulated-exchange-caddy Up (healthy)
simulated-exchange-grafana Up
simulated-exchange-market-simulator Up
simulated-exchange-nginx Up
simulated-exchange-order-flow-simulator Up
simulated-exchange-postgres Up (healthy)
simulated-exchange-prometheus Up
simulated-exchange-redis Up (healthy)
simulated-exchange-trading-api Up

3

Step 3: Verify Service Health

Check Trading API
curl -s http://localhost:8080/health | jq '.'

Expected: {"status":"healthy","database":"connected",...}

Check Market Simulator
curl -s http://localhost:8081/health | jq '.'

Check Order Flow Simulator
curl -s http://localhost:8082/health | jq '.'

Check Prometheus
curl -s http://localhost:9090/-/healthy

Expected: Prometheus is Healthy.

Step 4: Start Background Load Generation

Start continuous realistic load (runs in background)
./generate-load.sh 3600 30 > /tmp/load-gen.log 2>&1 &

Save the PID for cleanup later
echo $! > /tmp/load-gen.pid

Verify load is generating
sleep 5
curl -s --data-urlencode 'query=rate(orders_total[1m])' \
http://localhost:9090/api/v1/query | jq '.data.result[0].value[1]'

Expected: A number > 0 (e.g., "1.5" = 1.5 orders/sec)

Step 5: Verify Grafana Dashboards

Open browser to Grafana:

Open Grafana (or navigate manually to http://localhost:3000)
xdg-open http://localhost:3000 # Linux
open http://localhost:3000 # macOS

Login: admin / admin123

Verify these dashboards exist: 1. System Overview 2. Trading API Perfor-
mance 3. Market Simulator 4. Order Flow Simulator 5. Database Performance
6. Redis Cache Performance

Check data is flowing: - Look for order rate metrics > 0 - Check latency
graphs showing activity - Verify service health indicators are green

4

Step 6: Pre-Generate Test Flamegraphs

Generate baseline flamegraphs before demo
make profile-cpu

Verify flamegraph was created
ls -lh flamegraphs/cpu_profile_*.svg

Expected: SVG file ~500KB-2MB in size

Step 7: Verify Chaos Experiment Scripts

Check all chaos experiments are executable
ls -la chaos-experiments/*.sh

Run preflight check
cd chaos-experiments
./00-preflight-check.sh

Expected: All checks pass (Docker, bpftrace, etc.)
cd ..

Step 8: Prepare Presentation Materials

Open documentation in browser tabs
xdg-open docs/FLAMEGRAPH_GUIDE.md # Background reading
xdg-open chaos-experiments/README.md # Experiment catalog
xdg-open http://localhost:3000 # Grafana

Open a flamegraph for reference
xdg-open flamegraphs/cpu_profile_*.svg

Arrange windows: Grafana on left, flamegraph on right, terminal at bottom

Step 9: Pre-Demo Checklist

Run this checklist 10 minutes before demo:

#!/bin/bash
echo "Pre-Demo Checklist"
echo "=================="

1. All services running?
if [$(docker compose ps --status running | wc -l) -ge 8]; then
echo "� All Docker services running"

else
echo "� Some services not running - run: docker compose up -d"

5

fi

2. Load generating?
if curl -s --data-urlencode 'query=rate(orders_total[1m])' \

http://localhost:9090/api/v1/query | grep -q '"value"'; then
echo "� Load generation active"

else
echo "� No load - run: ./generate-load.sh 3600 30 &"

fi

3. Grafana accessible?
if curl -s http://localhost:3000/api/health | grep -q 'ok'; then
echo "� Grafana accessible"

else
echo "� Grafana not responding"

fi

4. bpftrace installed?
if command -v bpftrace &> /dev/null; then
echo "� bpftrace installed"

else
echo "� bpftrace not found - run: sudo apt-get install bpftrace"

fi

5. Flamegraphs exist?
if ls flamegraphs/*.svg &> /dev/null; then
echo "� Baseline flamegraphs ready"

else
echo "� No flamegraphs - run: make profile-cpu"

fi

echo ""
echo "Ready to present? (y/n)"

Demo Environment Overview
Architecture Diagram

���
� EXTERNAL ACCESS �
� http://localhost (Caddy Proxy) �
���

�
���
� PRESENTATION LAYER �

6

� ��������������� ���������������� ���������������� �
� � Grafana � � Prometheus � � Nginx � �
� � :3000 � � :9090 � � � �
� ��������������� ���������������� ���������������� �
���

�
���
� APPLICATION LAYER �
� ��������������� ���������������� ���������������� �
� � Trading API � � Market � � Order Flow � �
� � :8080 � � Simulator � � Simulator � �
� � � � :8081 � � :8082 � �
� ��������������� ���������������� ���������������� �
���

�
���
� DATA LAYER �
� ��������������� ���������������� �
� � PostgreSQL � � Redis � �
� � :5432 � � :6379 � �
� ��������������� ���������������� �
���

Services Description

Service Purpose Port Metrics
Trading API Order processing,

matching engine
8080 /metrics

Market
Simulator

Price generation,
market data

8081 /metrics

Order Flow
Simulator

Continuous order
generation

8082 /metrics

PostgreSQL Order persistence,
historical data

5432 N/A

Redis Caching, event bus
(pub/sub)

6379 N/A

Prometheus Metrics collection,
time-series DB

9090 N/A

Grafana Visualization,
dashboards

3000 N/A

Nginx Reverse proxy, rate
limiting

80 N/A

Caddy HTTPS
termination,
external access

443 N/A

7

Current System State

Before starting the demo, verify the baseline:

Check current order rate
curl -s --data-urlencode 'query=rate(orders_total[1m])' \
http://localhost:9090/api/v1/query | \
jq '.data.result[0].value[1]'

Check average latency
curl -s --data-urlencode 'query=rate(order_processing_duration_seconds_sum[1m])/rate(order_processing_duration_seconds_count[1m])' \
http://localhost:9090/api/v1/query | \
jq '.data.result[0].value[1]'

Check service health
curl -s http://localhost:8080/health | jq '.status'

Baseline Metrics (record these): - Order rate: ~30-50 orders/min - Average
latency: ~50-200ms - Service health: “healthy” - Database connections: 5-10

Demonstration Flow
Overview Timeline (45 minutes)

Time Phase Duration Focus
0:00-0:05 Introduction 5 min Problem statement, goals
0:05-0:10 Environment Tour 5 min Show architecture, Grafana
0:10-0:20 Flamegraph Demo 10 min CPU profiling, hot paths
0:20-0:30 Chaos: Network 10 min eBPF tracing, failures
0:30-0:40 Chaos: CPU 10 min Performance degradation
0:40-0:45 Wrap-up 5 min Q&A, next steps

Phase 1: Introduction (5 minutes)

Script Opening (1 min): > “Today we’re demonstrating three critical SRE
capabilities: chaos engineering, flamegraph profiling, and eBPF observability.
These tools help us understand system behavior under stress, identify perfor-
mance bottlenecks, and debug production issues without downtime.”

Problem Statement (2 min): > “Current challenges: > - We discover issues
in production, not in testing > - Performance problems are hard to diagnose
> - We can’t trace system behavior without instrumenting code > - Debugging
production requires restarts or log analysis”

8

Solution (2 min): > “These tools solve those problems: > - Chaos engineering:
Test failure scenarios safely before they happen > - Flamegraphs: Visualize
exactly where CPU time is spent > - eBPF: Trace kernel behavior in real-time
with <1% overhead”

What You’ll See: 1. Real-time profiling of a live trading system 2. Controlled
failure injection with automatic recovery 3. Kernel-level tracing without code
changes 4. Visual analysis of performance bottlenecks

Phase 2: Environment Tour (5 minutes)

Show Grafana Dashboards Navigate to: http://localhost:3000

Script: > “This is our microservices trading exchange. We have three main
services processing orders, simulating market data, and generating continuous
load.”

Point out: 1. System Overview Dashboard: - Show current order rate
(~30-50/min) - Point to latency metrics (~50-200ms) - Service health indicators
(all green)

2. Trading API Performance Dashboard:
• Request rate graphs
• Latency percentiles (p50, p95, p99)
• Error rate (should be near 0%)

Talking Points: - “These are our baseline metrics during normal operation” -
“We’ll watch these metrics change as we inject failures” - “Notice the system is
currently healthy - all green indicators”

Show Live Architecture

Show running containers
docker compose ps

Show resource usage
docker stats --no-stream

Script: > “We have 9 microservices running in Docker containers. Each service
exposes Prometheus metrics that Grafana visualizes. This is production-like
architecture.”

Phase 3: Flamegraph Profiling Demo (10 minutes)

Part A: Baseline CPU Profile (3 min) Script: > “Let’s start by profiling
our Trading API to see where it spends CPU time. This is running live against
production traffic.”

9

Execute:

make profile-cpu

What Happens: 1. Connects to Trading API on port 8080 2. Collects 30
seconds of CPU profile data 3. Converts to flamegraph SVG 4. Opens in
browser automatically

Output:

� Generating CPU flamegraph for trading-api
==

Profiling service on port 8080 for 30 seconds...
�������������������������������� 30s

� Profile data collected: 2.4MB
� Converting to flamegraph...
� Flamegraph generated: flamegraphs/cpu_profile_20251115-112030.svg

Opening in browser...

Part B: Analyze Flamegraph (5 min) When the flamegraph opens,
explain:

“Each box represents a function. Width = CPU time spent. Height
= call stack depth.”

Walk through:

1. Find the widest boxes at the bottom: > “This shows our order
processing hot path - the most expensive code”

2. Hover over boxes: > “See the exact function name and percentage of
total CPU time”

3. Identify bottlenecks:

Look for:
- Database query functions (usually 30-40% of CPU)
- JSON marshaling/unmarshaling (10-15%)
- Order validation logic (10-20%)
- Network I/O (5-10%)

4. Click to zoom: > “We can zoom into specific code paths. Let’s look at
the database layer.”

Key Insights to Point Out: - “40% of CPU time is in database operations”
- “JSON serialization takes 12% - we could optimize this” - “Order validation is
happening synchronously - could be parallelized”

10

Talking Points: - � “No code changes required - just attach profiler” - � “Visual
representation makes bottlenecks obvious” - � “Can profile production with <5%
overhead” - � “Baseline for before/after optimization comparisons”

Part C: Generate All Profile Types (2 min) Execute:

make profile-all

Script: > “We can profile more than just CPU. Let’s generate heap, goroutine,
and mutex profiles.”

Output shows:

Generating all profile types...
� CPU profile
� Heap profile (memory allocations)
� Goroutine profile (concurrency state)
� Mutex profile (lock contention)
� Allocs profile (allocation patterns)
� Block profile (blocking operations)

All profiles saved to: flamegraphs/

Quick explanation: - CPU: Where time is spent - Heap: What’s allocat-
ing memory - Goroutine: How many concurrent operations - Mutex: Lock
contention (parallel performance)

Phase 4: Chaos Engineering - Network Partition (10 minutes)

Introduction (1 min) Script: > “Now let’s inject a real failure. We’ll
partition the network between our Trading API and the database using iptables.
This simulates a network outage or firewall issue.”

“Watch the Grafana dashboard - you’ll see the failure happen in
real-time.”

Position screens: - Left monitor: Grafana dashboard - Right monitor: Termi-
nal with chaos script

Execute Chaos Experiment (7 min) Run:

make chaos-network-partition

Narrate as it runs:

Step 1 - Setup (30 sec):

[11:30:45] ���
[11:30:45] CHAOS EXPERIMENT: Network Partition
[11:30:45] ���

11

[11:30:45] � Docker containers running
[11:30:45] � bpftrace available
[11:30:45] Starting BPF network monitoring...

“The script is setting up eBPF tracing to watch TCP connections”

Step 2 - Baseline (30 sec):

[11:30:50] Collecting baseline metrics...
[11:30:50] Current order rate: 2.5 orders/sec
[11:30:50] Database connections: 8
[11:30:50] Average latency: 125ms

“Capturing baseline before we break things”

Step 3 - Inject Failure (15 sec):

[11:31:00] � INJECTING FAILURE: Network Partition
[11:31:00] Blocking traffic: trading-api → postgres (port 5432)
[11:31:00] Running: iptables -A DOCKER -p tcp --dport 5432 -j DROP
[11:31:00] � Network partition active

Point to Grafana: “Watch the dashboard - connection attempts
will start failing NOW”

Step 4 - Observe Failure (2 min):

[11:31:05] Monitoring system behavior...

[11:31:10] eBPF Trace: TCP SYN to 172.18.0.3:5432 (retransmit #1)
[11:31:15] eBPF Trace: TCP SYN to 172.18.0.3:5432 (retransmit #2)
[11:31:20] eBPF Trace: TCP SYN to 172.18.0.3:5432 (retransmit #3)
[11:31:25] eBPF Trace: Connection timeout - ETIMEDOUT (110)

[11:31:30] System state:
- Order submissions: FAILING (database unreachable)
- Cache: ACTIVE (serving stale data)
- Health check: DEGRADED
- Error rate: 100%

Explain eBPF output: “See these TCP retransmissions? That’s
the kernel trying to reconnect. eBPF lets us see this without touch-
ing our application code. We’re watching kernel networking in real-
time.”

In Grafana, point out: - Error rate spikes to 100% - Latency graph shows
timeouts - Database connection count drops to 0 - Service health indicator turns
red

Step 5 - Recovery (3 min):

[11:31:40] Failure duration: 90 seconds

12

[11:31:40] Beginning recovery...

[11:31:45] Removing network partition...
[11:31:45] Running: iptables -D DOCKER -p tcp --dport 5432 -j DROP
[11:31:45] � Network partition removed

[11:31:50] eBPF Trace: TCP SYN to 172.18.0.3:5432 - SUCCESS
[11:31:50] eBPF Trace: Connection established in 1.2s
[11:31:52] First successful order processed
[11:31:55] Service health: HEALTHY

[11:32:00] Recovery metrics:
- Time to first connection: 1.2s
- Time to first order: 2.5s
- Full recovery: 5.8s
- Orders lost: 0 (queued during outage)

In Grafana: “See the recovery? Error rate drops immediately, la-
tency returns to normal, connections re-established.”

Step 6 - Summary (30 sec):

��
� EXPERIMENT SUMMARY �
��

KEY FINDINGS:
1. Failure detection: < 1 second (first retransmit)
2. Recovery time: 5.8 seconds (network heal → full operation)
3. Data loss: 0 orders (queued and processed after recovery)
4. Retry behavior: Exponential backoff observed via eBPF

eBPF INSIGHTS:
- 15 TCP retransmission attempts observed
- Connection timeout after 25 seconds (kernel default)
- Immediate reconnection when partition healed
- No packet loss on other services (isolated failure)

RECOMMENDATIONS:
� Connection retry logic working correctly
� Consider reducing timeout from 25s to 10s
� Cache strategy effective during outage
� Health checks accurately reflect database state

Full report: /tmp/chaos-exp-02-20251115-113000.log

Discussion (2 min) Ask the audience: > “What did we learn?”

13

Key takeaways: 1. � eBPF showed kernel behavior: TCP retries, time-
outs visible without code 2. � System recovered automatically: No manual
intervention needed 3. � Metrics provided insight: Grafana showed real-time
failure state 4. � Safe to test: Cleanup happens automatically

Business value: > “We just validated our retry logic and measured actual
recovery time. If this happens in production, we know exactly what to expect:
~6 seconds to recover, no data loss.”

Phase 5: Chaos Engineering - CPU Throttling (10 minutes)

Introduction (1 min) Script: > “Network failures are dramatic, but grad-
ual performance degradation is more common. Let’s throttle CPU to see how
the system behaves under resource pressure.”

“This simulates: noisy neighbor in cloud, insufficient resources, or
traffic spike beyond capacity.”

Execute Chaos Experiment (7 min) Run:

make chaos-cpu-throttle

Narrate as it runs:

Step 1 - Setup:

[11:35:00] ���
[11:35:00] CHAOS EXPERIMENT: CPU Throttling
[11:35:00] ���
[11:35:00] Starting BPF scheduler monitoring...

Step 2 - Baseline:

[11:35:05] Baseline metrics:
- CPU usage: 25% (0.25 cores)
- Latency p50: 120ms
- Latency p95: 250ms
- Order throughput: 30 orders/min

“Normal operation uses about 25% of one CPU core”

Step 3 - Throttle CPU:

[11:35:10] � Limiting Trading API to 10% CPU (0.1 cores)
[11:35:10] Running: docker update --cpus=0.1 simulated-exchange-trading-api
[11:35:10] � CPU limit applied

Point to Grafana: “Watch latency increase as requests queue wait-
ing for CPU”

Step 4 - Observe Degradation (3 min):

14

[11:35:20] System behavior under CPU pressure:

Time	CPU %	p50 Latency	p95 Latency	Queue Depth
10s | 100% | 250ms | 500ms | 5
20s | 100% | 450ms | 950ms | 12
30s | 100% | 680ms | 1400ms | 24
40s | 100% | 920ms | 1850ms | 38
50s | 100% | 1150ms | 2300ms | 51

[11:36:00] eBPF Scheduler Trace:
- Context switches: 15,234 (3x normal)
- Runqueue wait time: avg 850ms (was 2ms)
- Time spent throttled: 90% of attempts
- Scheduler delays: p95 = 1.2 seconds

Explain: “eBPF scheduler tracing shows the kernel is throttling our
process 90% of the time. Requests are queuing up, waiting for CPU
time. Latency has increased 10x, but notice - no hard failures. The
system degrades gracefully.”

In Grafana show: - Latency graph climbing steadily - Request queue depth
increasing - No errors (100% success rate despite slowness) - CPU utilization
pegged at 100% (of the limit)

Step 5 - Recovery:

[11:36:10] Restoring normal CPU allocation...
[11:36:10] Running: docker update --cpus=2.0 simulated-exchange-trading-api
[11:36:10] � CPU limit removed

[11:36:15] Recovery in progress:
- Queue draining: 51 → 38 → 24 → 12 → 5 → 0
- Latency decreasing: 1150ms → 680ms → 250ms → 120ms
- CPU usage: 85% (processing backlog) → 25% (normal)

[11:36:30] � Full recovery: System back to baseline

“See how quickly it recovers once we remove the constraint? Queued
requests process rapidly, latency returns to normal.”

Step 6 - Summary:

��
� EXPERIMENT SUMMARY �
��

KEY FINDINGS:
1. Graceful degradation: Slowness, not failures

15

2. Queue buildup: Linear increase under sustained pressure
3. Recovery: 20 seconds to process backlog after constraint removed
4. No data loss: All requests eventually processed

eBPF INSIGHTS:
- Scheduler delays visible via BPF tracing
- Context switch rate 3x higher under pressure
- 90% of time spent waiting for CPU quota
- Kernel scheduler working as designed (fair allocation)

PERFORMANCE IMPACT:
- Latency increased 10x (120ms → 1150ms)
- Throughput maintained (queued, not dropped)
- Error rate: 0% (slow != broken)
- User experience: Severely degraded but functional

RECOMMENDATIONS:
� Set alerts at p95 latency > 500ms
� Auto-scale trigger at 70% CPU sustained for 60s
� Current capacity: ~3x current load before degradation
� Queue unbounded - consider max queue size for backpressure

Discussion (2 min) Key insights: 1. � eBPF showed scheduler be-
havior: Context switches, runqueue wait times 2. � Graceful degradation:
System slowed but didn’t fail 3. � Measurable capacity: Know exactly when
performance degrades 4. � Predictable recovery: Backlog processes quickly
when resources restored

Capacity planning value: > “We now know the system can handle 3x current
load before latency becomes unacceptable. We can set auto-scaling triggers at
70% CPU to maintain good performance.”

Phase 6: Wrap-Up & Next Steps (5 minutes)

Summary of What We Demonstrated Recap (2 min):

1. Flamegraph Profiling: - � Visual performance analysis with zero code
changes - � Identified hot paths: 40% in database, 12% in JSON - � Actionable
insights for optimization - � Multiple profile types (CPU, heap, mutex, etc.)

2. Chaos Engineering - Network: - � Controlled failure injection (network
partition) - � eBPF traced TCP retries and timeouts at kernel level - � Validated
retry logic and recovery time (5.8s) - � Grafana showed real-time failure state

3. Chaos Engineering - CPU: - � Gradual performance degradation under
resource pressure - � eBPF traced scheduler delays and context switches - �

16

Measured capacity limits (3x current load) - � Graceful degradation (slow !=
broken)

Business Value (1 min)

Capability Investment ROI
Chaos Engineering 1 week setup Find issues

before
customers;
reduce
MTTR 60%

Flamegraph Profiling 1 day setup Optimize
perfor-
mance;
reduce cloud
costs
30-40%

eBPF Observability 2 days training Debug
production
without
restarts;
<1%
overhead

Total Investment: ~2 weeks for team training and integration Expected
ROI: 6 months (via incident reduction + cost optimization)

Next Steps (2 min) Immediate (This Week): 1. Run remaining chaos ex-
periments: - make chaos-oom-kill (memory pressure) - make chaos-disk-io
(I/O starvation) - make chaos-cascade (multi-service failure)

2. Review generated artifacts:
• Flamegraphs in flamegraphs/
• Chaos logs in chaos-results/
• BPF traces in /tmp/chaos-exp-*.log.bpf

Short Term (This Month): 1. Identify 3 production optimization opportu-
nities from flamegraphs 2. Document baseline performance metrics 3. Create
runbooks based on chaos experiment findings 4. Schedule team training on
bpftrace basics

Long Term (This Quarter): 1. Integrate chaos testing into CI/CD pipeline
2. Set up continuous profiling in staging environment 3. Create eBPF-based
production debugging playbooks 4. Establish performance budgets based on
capacity testing

17

Resources to Share Documentation: - docs/FLAMEGRAPH_GUIDE.md -
Complete profiling guide - chaos-experiments/README.md - All 10 experi-
ments documented - chaos-experiments/QUICKSTART.md - Quick reference -
docs/SRE_RUNBOOK.md - Operational procedures

External Resources: - Brendan Gregg’s eBPF Book - Principles of Chaos
Engineering - Go pprof Documentation

Q&A (Time Remaining) Common Questions:

Q: Can we run chaos experiments in production? > A: Start in stag-
ing. Once confident, run low-impact experiments (like CPU throttling) during
low-traffic windows. Network partition and OOM kill are too disruptive for
production.

Q: What’s the performance impact of eBPF? > A: <1% CPU overhead.
eBPF runs in kernel space and is extremely efficient. Safe for production use.

Q: How often should we profile? > A: Continuously in staging, weekly in
production during load tests, and on-demand during incident response.

Q: What if we don’t use Go? > A: Flamegraphs work with any language
(Java, Python, C++, etc.). Tools differ but concepts are the same.

Q: Cost to implement? > A: Zero software costs (all open source). Invest-
ment is team training time (~2 weeks) and some CI/CD integration work.

Post-Demo Actions
Immediate Cleanup

Stop load generator
if [-f /tmp/load-gen.pid]; then
kill $(cat /tmp/load-gen.pid)
rm /tmp/load-gen.pid

fi

Verify all services recovered
docker compose ps

Clean up any chaos experiment remnants
docker compose restart

Archive demo artifacts
mkdir -p ~/demo-artifacts-$(date +%Y%m%d)
cp -r flamegraphs/ ~/demo-artifacts-$(date +%Y%m%d)/
cp -r chaos-results/ ~/demo-artifacts-$(date +%Y%m%d)/
cp /tmp/chaos-exp-*.log ~/demo-artifacts-$(date +%Y%m%d)/ 2>/dev/null || true

18

http://www.brendangregg.com/bpf-performance-tools-book.html
https://principlesofchaos.org/
https://principlesofchaos.org/
https://pkg.go.dev/net/http/pprof

Share Artifacts

Create a demo package:

cd ~/demo-artifacts-$(date +%Y%m%d)

Create summary document
cat > DEMO_SUMMARY.md << 'EOF'
SRE Demo - Chaos Engineering, Flamegraphs, and eBPF

Date
$(date)

Attendees
- [List attendees]

What We Demonstrated
1. CPU flamegraph profiling (10 min)
2. Network partition chaos test (10 min)
3. CPU throttling chaos test (10 min)

Key Findings
- Database operations consume 40% of CPU
- Network failure recovery time: 5.8 seconds
- System capacity: 3x current load before degradation
- Graceful degradation confirmed under CPU pressure

Artifacts Included
- CPU flamegraphs (SVG files)
- Chaos experiment logs
- eBPF traces
- Grafana dashboard screenshots

Next Steps
[Document action items from demo discussion]
EOF

Compress for sharing
tar -czf ../sre-demo-$(date +%Y%m%d).tar.gz .
cd ..

echo "Demo package ready: sre-demo-$(date +%Y%m%d).tar.gz"

Follow-Up Email Template

Subject: SRE Demo Follow-up - Chaos Engineering & Observability Tools

19

Hi Team,

Thank you for attending today's demonstration of chaos engineering,
flamegraph profiling, and eBPF observability tools.

DEMO HIGHLIGHTS:
• Profiled live system with zero code changes
• Injected network failures and observed auto-recovery (5.8s)
• Measured system capacity (3x current load)
• Traced kernel behavior with eBPF

KEY FINDINGS:
• 40% of CPU time in database operations (optimization opportunity)
• Network partition recovery validated (retry logic working correctly)
• Graceful degradation under CPU pressure (no hard failures)
• System capacity well understood for scaling decisions

ARTIFACTS ATTACHED:
• Flamegraph visualizations
• Chaos experiment reports
• eBPF trace samples
• Demo guide document

NEXT STEPS:
1. Review flamegraphs for optimization opportunities (by [date])
2. Run remaining chaos experiments in staging (by [date])
3. Schedule team training on bpftrace (proposed: [date])
4. Integrate profiling into CI/CD pipeline (Q[X] goal)

RESOURCES:
• Demo guide: docs/SRE_DEMO_GUIDE.md
• Chaos experiments: chaos-experiments/README.md
• Flamegraph guide: docs/FLAMEGRAPH_GUIDE.md

Questions? Let's discuss in our next team meeting or reach out directly.

Best regards,
[Your name]

Troubleshooting
Services Not Starting

Symptom: docker compose ps shows services as “Exited” or “Restarting”

20

Diagnosis:

Check logs for specific service
docker logs simulated-exchange-trading-api

Check all services
docker compose logs --tail=50

Common Issues:

1. Port conflicts:

Check what's using ports
sudo lsof -i :8080
sudo lsof -i :5432

Kill conflicting process
sudo kill -9 <PID>

2. Database not ready:

Wait for postgres health check
docker compose up -d postgres
sleep 30
docker compose up -d

3. Out of disk space:

df -h
docker system prune -a # Careful: removes unused images

Grafana Shows No Data

Symptom: Dashboards load but graphs are empty

Diagnosis:

Check Prometheus is scraping
curl http://localhost:9090/api/v1/targets

Should show all targets "up"

Fix:

Restart Prometheus
docker compose restart prometheus

Verify metrics endpoints
curl http://localhost:8080/metrics
curl http://localhost:8081/metrics
curl http://localhost:8082/metrics

21

Check Prometheus config
docker exec simulated-exchange-prometheus cat /etc/prometheus/prometheus.yml

Flamegraph Generation Fails

Symptom: make profile-cpu fails with “connection refused”

Diagnosis:

Check service is running
docker ps | grep trading-api

Check pprof endpoint
curl http://localhost:8080/debug/pprof/

Fix:

Ensure services fully started
docker compose restart trading-api
sleep 10

Try manual profiling
./scripts/generate-flamegraph.sh cpu 30 8080

Chaos Experiment Hangs

Symptom: Chaos script runs but never completes

Diagnosis:

Check if cleanup trap is working
ps aux | grep chaos

Check Docker status
docker compose ps

Fix:

Kill the script
pkill -f chaos-experiments

Manually cleanup
docker compose restart
sudo iptables -F DOCKER # Clear any iptables rules
docker update --cpus=2.0 --memory=2g simulated-exchange-trading-api

bpftrace Not Working

Symptom: “bpftrace: command not found” or permission errors

Diagnosis:

22

Check if installed
which bpftrace

Check kernel version
uname -r # Need 4.9+

Check permissions
sudo bpftrace --version

Fix:

Install bpftrace
sudo apt-get install -y bpftrace # Ubuntu/Debian
sudo dnf install -y bpftrace # RHEL/Fedora

If kernel too old
sudo apt-get install -y linux-headers-$(uname -r)

Add user to tracing group (optional)
sudo usermod -aG tracing $USER

Load Generator Not Working

Symptom: No orders visible in Grafana after starting load generator

Diagnosis:

Check if process running
ps aux | grep generate-load

Check trading API
curl http://localhost:8080/health

Check Prometheus query
curl -s --data-urlencode 'query=rate(orders_total[1m])' \
http://localhost:9090/api/v1/query

Fix:

Restart load generator
pkill -f generate-load
./generate-load.sh 3600 30 &

Verify orders submitting
curl -X POST http://localhost:8080/orders \
-H "Content-Type: application/json" \
-d '{"symbol":"BTCUSD","type":"MARKET","side":"BUY","quantity":1.0}'

23

Appendix
A. Complete Make Target Reference

Profiling Targets:

make profile-cpu # 30s CPU profile
make profile-cpu-long # 60s CPU profile
make profile-heap # Memory allocations
make profile-goroutine # Concurrency state
make profile-allocs # Allocation patterns
make profile-block # Blocking operations
make profile-mutex # Lock contention
make profile-all # All of the above
make profile-view # Open flamegraphs in browser
make profile-analyze # AI analysis of latest profile

Chaos Targets:

make chaos-all # Run all 10 experiments (60+ min)
make chaos-db-death # Database sudden death
make chaos-network-partition # Network partition (eBPF)
make chaos-oom-kill # Memory OOM kill
make chaos-cpu-throttle # CPU throttling
make chaos-disk-io # Disk I/O starvation (eBPF)
make chaos-conn-pool # Connection pool exhaustion
make chaos-redis # Redis cache failure
make chaos-nginx # Nginx proxy failure
make chaos-latency # Network latency injection
make chaos-cascade # Multi-service cascade
make chaos-flamegraph # Flamegraph during chaos

Utility Targets:

make help # Show all targets
make setup # Initialize project
make clean # Clean build artifacts
make profile-help # Profiling documentation

B. Prometheus Query Examples

Order Rate:

rate(orders_total[1m])

Average Latency:

rate(order_processing_duration_seconds_sum[1m]) /
rate(order_processing_duration_seconds_count[1m])

Error Rate:

24

rate(orders_total{status="FAILED"}[1m]) /
rate(orders_total[1m])

95th Percentile Latency:

histogram_quantile(0.95,
rate(order_processing_duration_seconds_bucket[1m]))

Database Connection Count:

database_connections_active

C. Grafana Dashboard URLs

After logging in (admin/admin123):

• System Overview: http://localhost:3000/d/system-overview
• Trading API: http://localhost:3000/d/trading-api
• Market Simulator: http://localhost:3000/d/market-simulator
• Order Flow: http://localhost:3000/d/order-flow
• Database: http://localhost:3000/d/database
• Redis: http://localhost:3000/d/redis

D. Useful bpftrace One-Liners

TCP connections:

sudo bpftrace -e 'kprobe:tcp_connect { printf("%s -> %s\n", comm, ntop(args->sk->__sk_common.skc_daddr)); }'

File opens:

sudo bpftrace -e 'tracepoint:syscalls:sys_enter_openat { printf("%s: %s\n", comm, str(args->filename)); }'

Process CPU time:

sudo bpftrace -e 'profile:hz:99 /comm == "trading-api"/ { @[ustack] = count(); }'

Memory allocations:

sudo bpftrace -e 'tracepoint:kmem:kmalloc { @[comm] = sum(args->bytes_alloc); }'

E. Docker Compose Quick Reference

Start all services:

docker compose -f docker-compose.yml -f docker/docker-compose.caddy.yml up -d

View logs:

docker compose logs -f trading-api
docker compose logs --tail=100

Restart service:

docker compose restart trading-api

25

Stop all:

docker compose down

Clean everything:

docker compose down -v # Remove volumes too
docker system prune -a # Clean unused images

F. Emergency Recovery

If demo environment is completely broken:

#!/bin/bash
Nuclear option: Complete reset

Stop everything
docker compose down -v

Remove chaos artifacts
sudo iptables -F DOCKER
sudo tc qdisc del dev docker0 root 2>/dev/null || true

Clean Docker
docker system prune -f

Restart from scratch
docker compose -f docker-compose.yml -f docker/docker-compose.caddy.yml up -d

Wait for initialization
sleep 60

Verify
docker compose ps
curl http://localhost:8080/health
curl http://localhost:3000/api/health

echo "Environment reset complete"

Document Version History

Version Date Changes Author
1.0 2025-11-15 Initial creation [Your name]

26

License & Attribution
This demonstration guide is part of the Simulated Exchange SRE training pro-
gram.

Tools Used: - Flamegraphs: Brendan Gregg (https://www.brendangregg.com/flamegraphs.html)
- bpftrace: IO Visor Project (https://github.com/iovisor/bpftrace) -
Prometheus: CNCF Project (https://prometheus.io/) - Grafana: Grafana Labs
(https://grafana.com/)

End of Document

27

	SRE Team Demonstration Guide
	Chaos Engineering, Flamegraphs, and eBPF Tooling
	Table of Contents
	Executive Summary
	What This Demo Shows
	Business Value
	Technology Stack
	Key Outcomes

	Prerequisites
	System Requirements
	Installation Commands
	Network Requirements
	Permissions

	Pre-Demo Setup
	Step 1: Clone and Navigate to Project
	Step 2: Start All Services
	Step 3: Verify Service Health
	Step 4: Start Background Load Generation
	Step 5: Verify Grafana Dashboards
	Step 6: Pre-Generate Test Flamegraphs
	Step 7: Verify Chaos Experiment Scripts
	Step 8: Prepare Presentation Materials
	Step 9: Pre-Demo Checklist

	Demo Environment Overview
	Architecture Diagram
	Services Description
	Current System State

	Demonstration Flow
	Overview Timeline (45 minutes)
	Phase 1: Introduction (5 minutes)
	Phase 2: Environment Tour (5 minutes)
	Phase 3: Flamegraph Profiling Demo (10 minutes)
	Phase 4: Chaos Engineering - Network Partition (10 minutes)
	Phase 5: Chaos Engineering - CPU Throttling (10 minutes)
	Phase 6: Wrap-Up & Next Steps (5 minutes)

	Post-Demo Actions
	Immediate Cleanup
	Share Artifacts
	Follow-Up Email Template

	Troubleshooting
	Services Not Starting
	Grafana Shows No Data
	Flamegraph Generation Fails
	Chaos Experiment Hangs
	bpftrace Not Working
	Load Generator Not Working

	Appendix
	A. Complete Make Target Reference
	B. Prometheus Query Examples
	C. Grafana Dashboard URLs
	D. Useful bpftrace One-Liners
	E. Docker Compose Quick Reference
	F. Emergency Recovery

	Document Version History
	License & Attribution

