SRE Demo Cheat Sheet

Quick Reference for Live Demonstration

Pre-Demo Setup (10 minutes before)

# 1. Start all services
docker compose -f docker-compose.yml -f docker/docker-compose.caddy.yml up -d
sleep 30

# 2. Start load generator
./generate-load.sh 3600 30 > /tmp/load-gen.log 2>&1 &
echo $! > /tmp/load-gen.pid

# 3. Verify services

docker compose ps

curl http://localhost:8080/health
curl http://localhost:3000/api/health

# 4. Open Grafana
xdg-open http://localhost:3000 # Login: admin/adminl23

# 5. Generate baseline flamegraph
make profile-cpu

Demo Flow Timeline

Time Section Command

0-5 min Introduction (Talking only)
5-10 min  Environment Tour Show Grafana + docker compose ps
10-20 min  Flamegraph Demo make profile-cpu

20-30 min  Chaos: Network make chaos-network-partition
30-40 min Chaos: CPU make chaos-cpu-throttle
40-45 min ~ Wrap-up (Talking + Q&A)

Phase 1: Introduction (5 min)

No commands - just talking



Key points: - Problem: Issues found in production, hard to debug - Solution:
Chaos + Flamegraphs + eBPF - What you’ll see: Real failures, real profiling,
kernel tracing

Phase 2: Environment Tour (5 min)
Show Running Services

docker compose ps

Show Resource Usage

docker stats —-no-stream

Show Current Metrics

# Order rate
curl -s --data-urlencode 'query=rate(orders_total[im])' \
http://localhost:9090/api/vl/query | jq '.data.result[0].value[1]'

# Latency
curl -s http://localhost:8080/health | jq '.latency'

Navigate Grafana

o Open: http://localhost:3000
e Show: System Overview dashboard
e Point out: Order rate, latency, service health

Phase 3: Flamegraph Profiling (10 min)
Generate CPU Flamegraph

make profile-cpu

Wait 30 seconds while it profiles

When flamegraph opens: 1. Explain: Width = CPU time, Height = call
stack 2. Find: Widest boxes (hot paths) 3. Hover: Show percentages 4. Point
out: Database ~40%, JSON ~12%

Generate All Profiles
make profile-all

Explain types: - CPU: Where time is spent - Heap: Memory allocations -
Goroutine: Concurrency - Mutex: Lock contention



Phase 4: Network Partition Chaos (10 min)
Setup

Position screens: - Left: Grafana dashboard - Right: Terminal

Execute

make chaos-network-partition

Narration Points
When it starts: > “Setting up eBPF to trace TCP connections...”

When baseline shows: > “Capturing normal metrics: 30 orders/min, 125ms
latency”

When failure injected (at ~30s): > “NOW - watch Grafana - connections
will start failing”

When eBPF traces show (at ~45s-90s): > “See TCP retransmissions? That’s
the kernel trying to reconnect. eBPF shows us kernel behavior without touching
our code.”

Point to Grafana: - Error rate spikes to 100% - Latency shows timeouts -
Database connections drop to 0 - Health indicator turns red

When recovery starts (at ~90s): > “Removing partition.. watch the recov-

»

ery

Point to Grafana: - Errors drop immediately - Connections re-establish -
Latency returns to normal

When summary shows: > “5.8 seconds to full recovery, zero orders lost”

Key Takeaways

e eBPF traced kernel networking
e Auto-recovery validated

e Retry logic working correctly

¢ Recovery time measured

Phase 5: CPU Throttling Chaos (10 min)
Execute

make chaos—cpu-throttle



Narration Points
When baseline shows: > “Normal CPU usage: 25%, latency 120ms”

When CPU limited (at ~10s): > “Limiting to 10% CPU - watch latency
climb in Grafana”

During degradation (10s-60s): > “Latency increasing.. 250ms... 500ms...
1000ms... but no failures”

Point to eBPF traces (at ~30s): > “Scheduler delays visible: 90% of time
spent waiting for CPU quota”

Point to Grafana: - Latency climbs steadily - Queue depth increases - CPU
pegged at 100% (of limit) - No errors - graceful degradation

When recovery starts (at ~60s): > “Removing limit... watch queue drain”

Point to Grafana: - Latency drops rapidly - Queue processes - Back to baseline
in 20 seconds

When summary shows: > “10x latency increase but 0% errors - system
degrades gracefully, not catastrophically”

Key Takeaways

e« eBPF traced scheduler delays

e Graceful degradation confirmed

e Capacity measured: 3x current load
¢ Recovery time known

Phase 6: Wrap-Up (5 min)
Summary

What we showed: 1. Flamegraphs: Visual performance analysis (40% DB,
12% JSON) 2. Network chaos: eBPF traced TCP, 5.8s recovery 3. CPU chaos:
Graceful degradation, capacity measured

Business value: - Find issues before customers - Optimize costs (40% DB —
optimization opportunity) - Debug production safely (eBPF <1% overhead)

ROI: 2 weeks investment, 6 month payback

Next Steps

1. Run remaining experiments (OOM, disk I/0O, cascade)
2. Review flamegraphs for optimization

3. Team training on bpftrace

4. Integrate into CI/CD



Emergency Commands

Stop Everything

# Kill load generator

kill $(cat /tmp/load-gen.pid 2>/dev/null)

# Stop demo
pkill -f chaos-experiments

# Restart services
docker compose restart

Cleanup Chaos Mess

# Clear iptables rules
sudo iptables -F DOCKER

# Reset CPU limits
docker update --cpus=2.0 simulated-exchange-trading-api

# Restart all
docker compose restart

Quick Recovery

# Nuclear option

docker compose down

docker compose -f docker-compose.yml -f docker/docker-compose.caddy.yml up -d
sleep 60

./generate-load.sh 3600 30 &

Useful Queries During Demo
Prometheus Queries

# Order rate
curl -s --data-urlencode 'query=rate(orders_total[im])' \
http://localhost:9090/api/vl/query | jq -r '.data.result[0].value[1]'

# Error rate
curl -s --data-urlencode 'query=rate(orders_total{status="FAILED"}[im])"' \
http://localhost:9090/api/vl/query | jq -r '.data.result[0].valuel[1] // "O"'



# Database connections
curl -s --data-urlencode 'query=database_connections_active' \
http://localhost:9090/api/vl/query | jq -r '.data.result[0].value[1]'

Health Checks

# Trading API
curl -s http://localhost:8080/health | jq .

# All services
for port in 8080 8081 8082; do

echo "Port $port:"

curl -s http://localhost:$port/health | jq -r '.status // "N/A"'
done

Talking Points
For Management

Cost savings: > “40% of CPU in database - optimization could reduce cloud
costs by 30-40%”

Risk reduction: > “Finding these issues in testing, not production. Netflix
saved millions with chaos engineering.”

Competitive advantage: > “Industry leaders (Google, Amazon, Netflix) use
these exact techniques”

For Engineers

Learning value: > “eBPF shows what’s really happening at kernel level - best
debugging education you can get”

Safety: > “All experiments auto-cleanup. Safe to run in staging.”

Actionable: > “Not just pretty graphs - specific optimizations identified
(database, JSON serialization)”

Common Questions & Answers

Q: Is this safe for production? > A: Start in staging. Some experiments
(CPU throttle, flamegraphs) are safe for prod. Others (network partition, OOM)
are staging-only.

Q: What’s the overhead? > A: Flamegraphs: <5% CPU. eBPF: <1% CPU.
Both safe for production.



Q: How long to implement? > A: 2 weeks for team training and integration.
ROI in 6 months via incident reduction and cost optimization.

Q: What if we don’t use Go? > A: Flamegraphs work with any language.
eBPF is language-agnostic. Tools differ but concepts are identical.

Q: Can we do this in our environment? > A: Yes. Everything shown is
open source and works on any Linux system with kernel 4.94-.

Post-Demo Cleanup

# 1. Stop load generator
kill $(cat /tmp/load-gen.pid)
rm /tmp/load-gen.pid

# 2. Archive artifacts

mkdir -p ~/demo-$(date +%Y%mJd)

cp -r flamegraphs ~/demo-$(date +)Y%m%d)/

cp -r chaos-results ~/demo-$(date +)Y%mid)/

cp /tmp/chaos-exp-*.log ~/demo-$(date +}4Y/m¥%d)/ 2>/dev/null

# 3. Optional: Stop services
docker compose down

# 4. Create artifact package
cd ~/demo-$(date +)Y%m%d)
tar -czf ../demo-artifacts-$(date +),Y/m)d).tar.gz .

URLs to Have Open

o Grafana: http://localhost:3000 (admin/admin123)
o Prometheus: http://localhost:9090

o Trading API: http://localhost:8080

o This cheatsheet: docs/SRE_DEMO_CHEATSHEET .md
o Full guide: docs/SRE_DEMO_GUIDE.md

Screen Layout Recommendation

MONITOR 1 (Audience View)

Grafana Flamegraph



Dashboard (Browser)

Terminal (chaos experiments)

MONITOR 2 (Your View)

Cheatsheet Notes
(This file)

Good luck with the demo!



	SRE Demo Cheat Sheet
	Quick Reference for Live Demonstration
	Pre-Demo Setup (10 minutes before)
	Demo Flow Timeline
	Phase 1: Introduction (5 min)
	Phase 2: Environment Tour (5 min)
	Show Running Services
	Show Resource Usage
	Show Current Metrics
	Navigate Grafana

	Phase 3: Flamegraph Profiling (10 min)
	Generate CPU Flamegraph
	Generate All Profiles

	Phase 4: Network Partition Chaos (10 min)
	Setup
	Execute
	Narration Points
	Key Takeaways

	Phase 5: CPU Throttling Chaos (10 min)
	Execute
	Narration Points
	Key Takeaways

	Phase 6: Wrap-Up (5 min)
	Summary
	Next Steps

	Emergency Commands
	Stop Everything
	Cleanup Chaos Mess
	Quick Recovery

	Useful Queries During Demo
	Prometheus Queries
	Health Checks

	Talking Points
	For Management
	For Engineers

	Common Questions & Answers
	Post-Demo Cleanup
	URLs to Have Open
	Screen Layout Recommendation


